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ABSTRACT

Five years of 0.018 latitude 3 0.018 longitude multiradar multisensor grids of composite reflectivity and

vertically integrated signals from the maximum expected size of hail (MESH) and vertically integrated liquid

(VIL) were created to examine the role of city size on thunderstorm occurrence and strength around four

cities: Dallas–Fort Worth, Texas; Minneapolis–St. Paul, Minnesota; Oklahoma City, Oklahoma; and Omaha,

Nebraska. A storm-tracking algorithm identified thunderstorm areas every minute and connected them to-

gether to form tracks. These tracks defined the upwind and downwind regions around each city on a storm-by-

storm basis and were analyzed in two ways: 1) by sampling the maximum value every 10min and 2) by

accumulating the spatial footprint over its lifetime. Beyond examining all events, a subset of events corre-

sponding to favorable conditions for urban modification was explored. This urban favorable (UF) subset

consisted of nonsupercells occurring in the late afternoon/evening in the meteorological summer on weak

synoptically forced days. When examining all thunderstorm events, regions at variable ranges upwind of all

four cities generally had higher areal mean values of reflectivity, MESH, andVIL relative to downwind areas.

In the UF subset, the larger cities (Dallas–Fort Worth andMinneapolis–St. Paul) had a 24%–50% increase in

the number of downwind thunderstorms, resulting in a higher areal mean reflectivity, MESH, and VIL in this

region. The smaller cities (Oklahoma City and Omaha) did not show such a downwind enhancement in

thunderstorm occurrence and strength for the radar variables examined. This pattern suggests that larger

cities could increase thunderstorm occurrence and intensity downwind of the prevailing flow under unique

environmental conditions.

1. Introduction

The rate of urbanization by the global population is on

an upward trend, from 30% in 1950 to 54% today, with

two-thirds of theworld projected to be living in urban areas

by 2050 (United Nations 2014). Population redistribution

concomitant with economic development is causing many

cities across the world to experience an urban area
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expansion at more than double the rate of their respective

population growth in the latter portion of the twentieth

century (Angel et al. 2011). Expanding urban landscapes

reduce local biodiversity and enhance surface roughness

as a result of the spatial distribution of impervious surfaces

(Landsberg 1981; Seto et al. 2012), modify the atmospheric

contributions of aerosols (Van den Heever and Cotton

2007; Rosenfeld et al. 2008; Ntelekos et al. 2009; Schmid

and Niyogi 2017), and alter surface energy budgets to

generate urban heat islands (UHIs; Oke 1973, 1987).

As a result, there is a continued demand to study the

meteorological impacts, among other topics, caused by

these urban-induced environmental feedbacks (Melillo

et al. 2014).

Studies investigating the effects of urban environ-

ments on precipitation modification have been occur-

ring for nearly a century (see reviews by Landsberg

1981; Lowry 1998; Shepherd 2005; Souch and

Grimmond 2006; Shepherd 2013; Mitra and Shepherd

2016). One notable observational study, as summarized

in Changnon (1968, 1980), suggested that Chicago, Illi-

nois, is increasing the number of rainfall and hail hazard

days in La Porte, Indiana. This study led to a seminal

coordinated field program, the Metropolitan Meteoro-

logical Experiment (METROMEX), which explored

inadvertent modification of precipitation patterns by the

city of St. Louis, Missouri (Changnon et al. 1971). Re-

sults from this campaign revealed a 4%–25% increase in

rainfall around 50–75 km downwind of the city during

the warm season months (Changnon 1979; Changnon

et al. 1991). METROMEX not only validated prior

urban thunderstorm studies, it also served as the im-

petus for continued urban meteorological modification

research across the United States (e.g., Westcott 1995;

Bornstein and Lin 2000; Shepherd et al. 2002; Dixon

and Mote 2003; Burian and Shepherd 2005; Niyogi

et al. 2006 Mote et al. 2007; Ntelekos et al. 2007; Rose

et al. 2008; Hand and Shepherd 2009; Niyogi et al. 2011;

Ashley et al. 2012; J. A. Smith et al. 2012; Haberlie et al.

2015; Niyogi et al. 2017) and around the world (e.g.,

Yonetani 1982; Jauregui and Romales 1996; Tayanc

and Toros 1997; Robaa 2003; Kishtawal et al. 2010;

Mitra et al. 2012; Zhang et al. 2014; Dou et al. 2015;

Singh et al. 2016).

Contemporary observational studies use a variety of

tools and datasets to document inadvertent precipitation

modification by urban areas. Many past approaches have

relied on the measurement of precipitation at a single

point or the assembly of observational points into a

contour map (Huff and Changnon 1972; Jauregui and

Romales 1996; Bornstein and Lin 2000; Burian and

Shepherd 2005; Diem andMote 2005; Niyogi et al. 2017).

Using 19 rain gauges around the Houston, Texas, metro

area, Burian and Shepherd (2005) found an increase in

rainfall totals ranging from 59% within the urban foot-

print to 30% downwind of Houston between noon and

midnight. Diem and Mote (2005) found an increase in

the number of summertime heavy-precipitation days

at a station 30km downwind of Atlanta, Georgia, which

they postulate is due to increased urbanization of the

metropolitan area. In one part of Niyogi et al. (2017),

they examined 50years of gauge network data across

the eastern United States and found that locations near

urban–rural boundaries experienced significantly more

rainfall in the summer months. While gauge networks

serve as a direct measurement of the amount of rainfall,

thunderstorms and their associated precipitation magni-

tudes can vary geographically, causing an underestimate

in precipitation totals with a sparse observation network

(Smith et al. 1994; Souch and Grimmond 2006).

The integration of satellite-based data has also

been a relevant technique in recent years. Hand and

Shepherd (2009) compared satellite-based radar from

the Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis (TMPA) to rain

gauges around Oklahoma City, Oklahoma (OKC).

Not only did they observe a strong relationship be-

tween the prevailing wind and a rainfall enhancement

in a 25-km area northeast of OKC, they also found that

the satellite-based precipitation estimates were rela-

tively accurate when compared to gauge networks.

The global ubiquity of satellite data allows for the use

of TRMM/TMPA data to explore the positive corre-

lation between rapid urbanization and precipitation

enhancement in India (Kishtawal et al. 2010; Mitra

et al. 2012) and a measured decline in the number of

precipitation days in Beijing, China (Zhang et al. 2014).

However, because of its non-geostationary orbit, the

TMPA system was unable to perform subhourly ana-

lyses, limiting its ability to collect precipitation in-

formation on individual thunderstorm events (Shepherd

and Burian 2003).

The integration of terrestrial lightning detection net-

works partially addresses these temporal limitations by

allowing for the identification of predominantly cloud-to-

ground (CG) strikes across widespread areas at sub-

minute temporal resolution [see the review by Stallins

and Rose (2008)]. Urban aerosols can play a role in

changing the microphysical processes associated with the

strength and duration of updrafts (Van den Heever and

Cotton 2007; Rosenfeld et al. 2008; Schmid and Niyogi

2017), and updraft strength is strongly correlated to total

lightning production (Deierling and Petersen 2008). In

the United States, Steiger et al. (2002) and Stallins et al.

(2006) found enhanced CG lightning densities over and

downwind of Houston and Atlanta, respectively. Yet,
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CG lightning occurrence can be discontinuous in time

and space, leading to challenges in making spatial asso-

ciations with specific thunderstorms (Boussaton et al.

2007; Stallins and Rose 2008).

Ground-based radar provides a spatially continuous

view of precipitation echoes and is a valuable tool for

examining the urban feedbacks on thunderstorms (e.g.,

Matyas 2010). Atkinson (1971) used radar to track the

echo position and intensity of a single thunderstorm and

observed rapid cloud growth followed by a local pre-

cipitation maximum within the city limits of London,

United Kingdom. Bornstein and LeRoy (1990) used ra-

dar reflectivity to show echo maxima over New York

City, New York, associated with urban-initiated thun-

derstorms and highlight a propensity for storms that ini-

tiated upwind of the city to bifurcate after interactingwith

the city. In recent years, Doppler radar data, particularly

from the Weather Surveillance Radar-1988 Doppler

(WSR-88D) network, have been used to develop retro-

spectives of urban-induced thunderstorm initiation and

intensity tracking (Mote et al. 2007; Niyogi et al. 2011;

Ashley et al. 2012; Haberlie et al. 2015). Leveraging

hourly precipitation data from the WSR-88D site collo-

cated with Atlanta, Mote et al. (2007) observed pre-

cipitation enhancement downwind of the city that is most

evident in the early evening hours through the summer

months of 2002–06. Niyogi et al. (2011) evaluated 91

unique summertime thunderstorm events around In-

dianapolis, Indiana, and found that 60% of storms inter-

acting with the city changed structure (i.e., shape and

size), with these changes occurring more frequently dur-

ing the daytime compared to nighttime convection. An

accompanying model sensitivity analysis of a convective

event run with the Indianapolis urban area present and

absent reveals the urban-present case altered the atmo-

spheric flow patterns significantly. This is likely due to the

different surface characteristics in urban landscapes

compared to rural areas. These include increased surface

roughness, lower albedo, and elevated heat capacity due

to the abundance of human-made materials. Ashley et al.

(2012) evaluated 10 summers’ worth of 5-min composite

reflectivity data alongside CG lightning data to examine

the influence of five urban and two rural areas in the

southeastern United States on thunderstorm activity oc-

curring on synoptically benign days. Their observations

suggest that larger cities have a positive correlation to

thunderstorm frequency and intensitywhilemidsize cities

provide a more muted signal that is difficult to decouple

from other local or regional physiographical processes.

Haberlie et al. (2015) used an extended version of the

composite reflectivity dataset from Bentley et al. (2010)

and Ashley et al. (2012) to examine how the urban en-

vironment around Atlanta affects the rate of isolated

convective initiation (ICI) events. After segmenting to

summermonths and synoptically benign days, they found

that ICI occurrence was most pronounced in the late

afternoon/early evening hours (2100–0300 UTC), partic-

ularly during weekdays, compared to a rural control re-

gion west of the city. In addition, ICI occurrence tended

to occur over and downwind of the city area, particularly

for 700-hPa flows with a northerly component.

In general, most investigations using radar to understand

urban-induced feedbacks have focused on summertime

months when urban and rural temperature differences are

the highest; however, these temperature differences exist

year round (Gallo and Owen 1999). The few multiradar

WSR-88D studies have focused on the southeastern

United States (Bentley et al. 2010; Ashley et al. 2012;

Haberlie et al. 2015) while observational studies outside

this region have focused on single-radar analyses of re-

flectivity (Bornstein and LeRoy 1990; Niyogi et al. 2011)

or rainfall (J. A. Smith et al. 2012) for one metropolitan

area. Huff and Changnon (1973) found inadvertent pre-

cipitation modification around six cities, three of which

(Chicago, St. Louis, and Cleveland, Ohio) were located in

the central United States and displaced from the eastern

seaboard where a majority of observational WSR-88D

studies have occurred. Furthermore, several studies sug-

gest that thunderstorm modification can lead to taller con-

vective clouds, allowing for greater amounts of supercooled

water to enter the 2108 to 2208C isothermal region, en-

hancing the potential for lightning and hail hazards

(Shepherd 2005; Van den Heever and Cotton 2007). Yet,

the ability to observe and calculate the vertically integrated

signal of a radar echo is underexplored to date.

This study fills in some of the knowledge gaps above by

first introducing how to use the Multi-Radar Multi-

Sensor system (MRMS; Smith et al. 2016) framework to

quality control and create 3D cubes of radar reflectivity

and subsequently derive vertically integrated fields for

precipitation volume and hail growth. Second, this

workflow is used to create a 5-yr (2010–14), all season,

MRMS dataset to examine thunderstorm frequency and

strength around four cities of different sizes in the central

United States: Dallas–Fort-Worth, Texas (DFW); OKC;

Omaha, Nebraska (OAX); and Minneapolis–St. Paul,

Minnesota (MSP). This region is not only underexplored

in contemporary studies, but represents an area relatively

sheltered from major physiographic factors (i.e., oceans

and mountain ranges) that can influence thunderstorm

activity and be difficult to decouple fromurban influences

(Ashley et al. 2012; Walker et al. 2015).

In addition to generating the MRMS framework, this

study uses an automated thunderstorm identification and

tracking system to identify thunderstorm areas (hereafter

referred to as objects) and collect radar-derived attributes at
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each time step. Using these event-specific objects, the ob-

jective of this studywill be to examine the role city size plays

in the strength of a thunderstorm, expressed by using

composite reflectivity (i.e., the maximum reflectivity mea-

sured in the vertical column), and the vertical structure and

intensity of a thunderstorm, expressed using calculations of

vertically integrated liquid (VIL; Greene and Clark 1972)

and the maximum expected size of hail (MESH;Witt et al.

1998). VIL and MESH are two ways to represent the 3D

structure of a precipitation echo in a 2D plane and have

been used in recent examinations detailing the relationships

between thunderstorm kinematics and lightning (e.g.,

Chronis et al. 2015; Schultz et al. 2015) and forecasting se-

vere convective potential (e.g., Cintineo et al. 2014).

One of the primary benefits to using a multiradar

blending approach over a single-radar analysis is that

several WSR-88Ds are near urban areas and can

underestimate intensity when a thunderstorm is nearby

For instance, a convective cell passed directly over the

KOAX WSR-88D site near OAX on 24 May 2012

(Fig. 1). Tracking intensity by the 55-dBZ echo area in

composite reflectivity shows a rapid decline as the storm

passes near and over the radar site before increasing

again.MRMS, because of its ability to blend information

from multiple radars to mitigate radar geometry issues,

fills in the area over KOAX to provide better vertical

coverage of the storm (Lakshmanan et al. 2006). As a

result, the MRMS reflectivity dataset does not show this

artificial rapid decline in thunderstorm intensity as was

observed in the single-radar analysis. This improvement

is very important given that a WSR-88D site exists

within the urban footprint for two of the study cities

(DFW and MSP), within 7 km from OAX, and 10km

from OKC.

FIG. 1. Time series of the 55-dBZ echo area of a thunderstorm passing over the KOAX WSR-88D site (white circle) on 24 May 2012

derived from single- and multiple-radar analyses. In the single-radar analysis, there is an artificial decline in the echo area as the storm

moves over the radar site as a result of sampling limitations. Leveraging data from multiple radars mitigates this issue and provides

a cleaner evaluation of storm intensity.
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2. Study domain

The study domain extends from 49.68N, 102.58W in

the northwest corner to 28.08N, 84.98W in the southeast

corner and encompasses a region commonly referred

to as the U.S. Great Plains (Rossum and Lavin 2000)

(Fig. 2). Four cities with different spatial urban foot-

prints (Table 1) were chosen for analysis with the urban

size ranging from 702.4 km2 in OAX to 4607.9 km2 in

DFW. According to the 2011 version of the National

Land Cover Database (Homer et al. 2015), four cate-

gories—shrub/scrub (52), grassland (71), pasture/hay (81),

and cultivated crops (82)—constitute the majority of the

land cover within 25km of each city. These categories

constitute 70.4% of the land cover surrounding DFW,

62.6% around MSP, 69.6% around OKC, and 83.7%

around OAX. As described in Walker et al. (2015),

mean annual precipitation rates decline westward to-

ward the Rocky Mountains and along a southeast–

northwest gradient across the Great Plains. As a result,

the northern two cities see around a 150-mm decline in

mean precipitation relative to the OKC and DFW do-

mains. From 2010 through 2014, the SPC severe thun-

derstorm events database (Schaefer and Edwards 1999)

shows at least 400 reports of significant severe hazards

[i.e., hail $ 2 in. (1 in. 5 25.4 mm), wind gusts $ 65kt

(1kt 5 0.51ms21), or tornado] occurring within 200km

of each city. The ingredients for thunderstorms are more

prevalent at southern latitudes, leading to an increased

number of severe thunderstorm opportunities and re-

ports in the southern two cities (e.g., Brooks et al. 2003;

B. T. Smith et al. 2012; Cintineo et al. 2012).

3. Data

a. Radar data

The WSR-88D Next-Generation Weather Radar

(NEXRAD) network, consisting of 160 S-band radars

across the United States and outlying territories, was

installed as part of the National Oceanic and Atmo-

spheric Administration’s (NOAA) National Weather

Service (NWS) modernization and restructuring initia-

tive in the 1990s with the goal of improving hazardous

weather awareness and warning performance (Crum

and Alberty 1993; Polger et al. 1994). Since its initial

inception, numerous improvements in data quality

control and resolution have been operationally im-

plemented (Crum et al. 1998). This 5-yr study period

represents one such era of improvement with the

availability of ‘‘superresolution’’ products for all

NEXRAD radars of interest (Torres and Curtis 2007).

FIG. 2. The study domain covering 2 177 084 km2 of the U.S. central plains. (left) The cities using the Topologically Integrated Geo-

graphic Encoding and Referencing (TIGER) dataset (black contours; U.S. Census Bureau 2010) and 300-km radar coverage regions

utilized in this study (blue circles). (right) Land cover classification by the 2011 NLCD dataset around each of these cities.

FEBRUARY 2018 K INGF I ELD ET AL . 299



Superresolution enhances the quality of base radar

variables by reducing the effective scanning beamwidth

from 1.388 to 1.028. This allows for vortex and other

storm-scale features to be resolved at longer ranges from

any single WSR-88D (Brown et al. 2002, 2005).

A level-II archive of these data, containing at least three

Doppler radar moments (i.e., reflectivity, velocity, and

spectrumwidth) alongwith system status and interpretation

information (Crum et al. 1993), is available for download

from the National Centers for Environmental Informa-

tion (NCEI). All available level-II data for each of the 19

WSR-88D sites from 2010 to 2014, amounting to 7107005

volume scans, were utilized in this study.

b. Lightning data

The NLDN is a system of ground-based lightning

sensors that detects electromagnetic radiation emitted

by CG flashes and strokes as well as a small percentage

of in-cloud pulses across the continental United States

(CONUS) (Cummins et al. 1998). Major network up-

grades in 2003 provide uniform continental coverage

with a high detection efficiency (;95%) for CG flashes

and geographically variable detection efficiency for

cloud flashes (16%–40%; Cummins and Murphy 2009).

Using the National Severe Storms Laboratory NLDN

archive, 1 234625 one-minute time steps were down-

loaded to identify the 39664548 CG events that occurred

in the study domain.

c. Environmental analysis

TheRapidUpdate Cycle (RUC; Benjamin et al. 2004)

was the first operational numerical weather prediction

system to assimilate multisensor observations and pro-

vide both hourly analysis (i.e., current conditions) and

short-range forecast grids to enhance situational aware-

ness on near-term hazardous weather. In 2012, the im-

provements to the RUC assimilation framework were

implemented and the system was rebranded as Rapid

Refresh (RAP; Benjamin et al. 2016). This study uses the

hourly analysis fields produced by the RUC and RAP

(hereinafter referred to as the model) to improve the

dealiasing of radar velocity data (e.g., Miller et al.

2013), create blended radar and environmental fields

(e.g., Smith et al. 2016), and assist in the classification of

thunderstorm convective modes (e.g., Hobson et al.

2012). Five years of the highest-resolution model

analysis data (either 20 or 13 km), amounting to

43 613 h, were downloaded from the NCEI National

Model Archive and Distribution System. If an hourly

analysis grid is missing, another grid up to 3 h old was

used to fill in the missing values; otherwise, that hour

was excluded from the dataset. This wasmainly an issue

between 1 and 8 May 2012, during the initial opera-

tional transition from RUC to RAP.

d. Urban boundaries

There is no standardized definition of urbanization

in the past literature. Urban areas have been defined

by circular search areas extending from the city center

(Hand and Shepherd 2009; Haberlie et al. 2015), the

U.S. Census Bureau (Mote et al. 2007; Walker et al.

2015), or Landsat-classified land cover datasets

(Ashley et al. 2012). Recent work by Niyogi et al.

(2017) suggests using a combined approach that con-

siders both satellite-based imagery and population as

human-induced activities can extend beyond a city

core when defined strictly in terms of impervious

surface. In this study, two methods of urban identifi-

cation were used to create an urban boundary. The

first method used the urban boundary coordinates

from the U.S. Census Bureau (2010). The definition of

an urban area consists of a spatially dense region of

urban land use that contains greater than 50 000 peo-

ple. The second method involved manually contouring

an urban boundary from the urban/built-up categories

from the 2011 NLCD dataset (Homer et al. 2015),

which uses Landsat satellite data to classify land cover

types. Both methods provided very similar latitudinal

and longitudinal distances for the city (,5km) and

fundamentally did not alter the overall results of

the study. Both city areas were compared with ambient

population estimates from the 2012 LandScan dataset

TABLE 1. Population and land area from the 2010 U.S. Census (U.S. Census Bureau 2010), latitudinal and longitudinal length of the

urban area defined using the 2011NLCDdataset, twentieth-centurymean annual precipitation fromNOAA/NCEI (2014), and significant

severe thunderstorm hazards inside the urban footprint and within 200 km of the urban footprint from 2010 to 2014 from the Storm

Prediction Center events database (Schaefer and Edwards 1999).

City Population

Land area

(km2)

Latitudinal

length (km)

Longitudinal

length (km)

Mean annual

precipitation (mm)

Significant severe

hazards within

urban footprint

Significant severe

hazards within 200 km

of urban footprint

OAX 725 008 702 40 47 723 16 625

OKC 861 505 1064 56 53 874 55 658

MSP 2 650 890 2647 83 85 717 27 409

DFW 5 121 892 4608 103 127 869 86 578
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(Bhaduri et al. 2007) to determine if the areas encapsulate

the spatial distribution of population in the region. The

city areas defined within this study contain 92%–96% of

the ambient population when compared to the total

population within a 25-km search radius surrounding

each city.As a result, we consider these defined regions to

be an adequate surrogate for both the physical compo-

nents (i.e., buildings, impervious surface) and human

components of a city (i.e., transportation).

4. Methods

a. Product generation and thunderstorm tracking

All radar, model, and lightning outputs were pro-

cessed using the Warning Decision Support System–

Integrated Information (WDSS-II; Lakshmanan et al.

2007b) software platform. The processing steps (flowchart

in Fig. 3) for each of the products are described

below.

1) CG LIGHTNING GRIDS

The CG strike location and time information from the

NLDN dataset were binned into 1-min time steps and

gridded onto a 0.018 3 0.018 Cartesian grid (w2ltgcount;

Fig. 3). To account for the increased detection efficiency

of lower-amplitude events that may not actually be CGs

(Cummins and Murphy 2009), all CGs with a peak

amplitude , j5j kA were excluded from the gridding

process.

2) MODEL ANALYSIS GRIDS

Hourly model analysis data were ingested to reproject

the basic meteorological fields (i.e., temperature, height,

pressure, wind) at all vertical levels onto a common

Cartesian grid. These fields served as inputs into the

near-storm environment (nse; Fig. 3) algorithm to gen-

erate 2D convective instability fields, isothermal heights,

and sounding profile products. These output fields

were used to quality control the single-radar data [see

FIG. 3. Radar, model, and lightning processing workflow using WDSS-II.

FEBRUARY 2018 K INGF I ELD ET AL . 301



section 4a(3)] and generate several multiradar and

tracking products [sections 4a(4) and 4a(5)].

3) SINGLE-RADAR PRODUCT GENERATION AND

QUALITY CONTROL

Level-II radar data were ingested to generate the base

products of reflectivity, aliased velocity, and spectrum

width (ldm2netcdf; Fig. 3). Previous studies have miti-

gated the impact of nonmeteorological targets (e.g.,

birds/insects, ground clutter, electronic interference)

and blockage by using a higher minimum reflectivity of

40 dBZ to identify a precipitation echo (Ashley et al.

2012; Haberlie et al. 2015). For this analysis, a neural

network framework similar to that in Lakshmanan et al.

(2007a) was used to identify and remove these sources of

error while retaining lower reflectivity precipitation re-

turns in a new ReflectivityQC field (w2qcnn; Fig. 3).

ReflectivityQC was used in conjunction with the NWS

operational dealiasing algorithm (Jing andWiener 1993)

to mitigate measurement errors in the radial projection

of the environmental wind and generate a quality-

controlled velocity field (dealias2d; Fig. 3). Both of

these fields were inputs in the generation of single and

vertically integrated azimuthal shear products (w2circ;

Fig. 3) (Smith and Elmore 2004).

4) MULTIRADAR GRID GENERATION

The ReflectivityQC and vertically derived azimuthal

shear from the individual radar sites along with the

model data were inputs into an intelligent agent

framework similar to that of Lakshmanan et al. (2006) to

generate 3D Cartesian grids for reflectivity (azimuthal

shear) at 0.018 latitude 3 0.018 longitude (0.0058
latitude3 0.0058 longitude) spatial resolution and 1-min

temporal resolution, across 33 vertical levels (w2merger;

Fig. 3). These levels have 250-m vertical spacing from 0.5

to 3km AGL, 500-m vertical spacing from 3 to 9 km

AGL, and 1-km vertical spacing from 9 to 20 km AGL.

To calculate VIL at a grid cell, the 3D reflectivity field

was vertically interpolated using the Greene and Clark

(1972) method. To exclude contamination from large

ice or hail, interpolated reflectivity values exceeding

56 dBZwere capped at this value. MESHwas calculated

using the method of Witt et al. (1998) and uses both a

vertical integration of reflectivity along with the loca-

tions of the 08 and2208C isothermal heights to estimate

the maximum diameter of a hailstone.

5) AUTOMATED THUNDERSTORM TRACKING

The storm identification and tracking algorithm in

WDSS-II (w2segmotionll; Fig. 3) combines a watershed

segmentation model (Lakshmanan et al. 2009) with

K-means clustering (Bishop 2006) to identify thunderstorm

objects based on a single observational variable (e.g.,

radar reflectivity). During the tracking process, sum-

mary statistics of other MRMS gridded attributes (e.g.,

maximum MESH, lightning count) can be calculated at

each time step (Lakshmanan and Smith 2009). In this

study, the algorithm was used to identify and track

thunderstorm attributes in two stages. The first stage

used composite reflectivity of 20 dBZ to identify and

track storm objects (Hobson et al. 2012). Additionally,

at this stage, the convective mode of each tracked storm

was identified as either a supercell (Browning 1962) or

nonsupercell through an automated analysis of the azi-

muthal shear fields. The storm classification and MRMS

attributes were then reassigned to new storm objects

through a second use of the w2segmotionll algorithm

using reflectivity at the 2108C isothermal level with a

minimum threshold of 20 dBZ. These new storm tracks

were less susceptible to dramatic changes across time

steps that can inadvertently break thunderstorm track-

ing (Herzog et al. 2014).

Quality control or hardware failures from a radar site

can temporarily alter the magnitude and extent of a

thunderstorm, causing a tracking algorithm to reclassify

the storm as a new object and prematurely break an

existing thunderstorm track. To assess the integrity of

the thunderstorm tracks, a postevent track attachment

technique [similar to that in Lakshmanan et al. (2015)]

was used to validate that the end of tracking corre-

sponded to the end of the storm’s life cycle. The thun-

derstorm object boundaries were simplified using a

convex hull (Devadoss and O’Rourke 2011), expanding

this boundary by a radius of 5 km, and then projecting

this new object forward along the mean direction of

propagation for one more radar volume update interval

(;5min). If a new thunderstorm object appeared within

the projected buffer, the object track of the original

storm was extended. In the case of multiple new objects

appearing in this search window, a selection was prior-

itized based on the 1) maximum storm lifetime, 2)

closest start time, and 3) maximum spatial storm overlap

within the search buffer.

b. Thunderstorm case selection

The information from the thunderstorm tracks was

evaluated using two distinct methods. The first method

examines how the maximum values of composite

reflectivity, MESH, and VIL change by taking in-

dependent samples of thunderstorms upwind and

downwind of each city. The second method examines

the spatial distribution of the three radar fields within

these two regions. Given the initial tracking process

spans across all seasons, certain criteria were applied

to define a thunderstorm event for analysis. First, a

302 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



thunderstorm object had to be tracked for at least 30min

to remove tracks that could be classified as noise or

failed thunderstorms (Haberlie et al. 2015). Second, the

object centroid (i.e., the geographic center of the object

area) had to pass within the urban boundary. This re-

moved many cases, where only a small fraction of a

larger, more organized storm system was generally dis-

placed from the city, from the dataset. Finally, the storm

had to achieve a 35-dBZ composite reflectivity value

and have oneCG strike anywhere in its object area for at

least one time step. Reflectivity thresholds ranging from

20 to 60 dBZ were examined and the 35-dBZ minimum

coupled with the detection of lightning best removed

events associated with nonconvective snow systems and

stationary sources of noise that passed through radar

quality control.

As noted in previous studies (e.g., Huff and Changnon

1972; Lowry 1998; Dixon and Mote 2003), examining

thunderstorm days without any segmentation by season,

synoptic regime, or diurnal limits could mask the effect

urban areas have on thunderstorms. A subset of the data

was created using seasonal, diurnal, and synoptic con-

ditions with an increased likelihood of influence from

urban effects. This ‘‘urban favorable’’ (hereafter re-

ferred to as UF) subset consisted of thunderstorm tracks

that 1) occurred in the meteorological summer months

(1 June–31 August) when the greatest urban–rural

temperature differences are likely to occur (Gallo and

Owen 1999); 2) initiated around the urban area in the

midafternoon/evening hours (1800–0600 UTC), when

the temperature difference and enhanced convective

activity are most likely to occur (e.g., Mote et al. 2007;

Haberlie et al. 2015); 3) occurred on days classified as

moist tropical (MT) air masses [via the Spatial Synoptic

Classification dataset of Sheridan (2002)] since these

days yield greater UHI-induced precipitation events

than dry airmass days (Dixon and Mote 2003; Hand and

Shepherd 2009; Ashley et al. 2012); and 4) where,10%

of the storm tracks were classified as a supercell

(Hobson et al. 2012) to further remove days with in-

creased vertical shear and meteorological forcing.

1) STORM-BASED MAXIMUM SAMPLING

As a result of the 1-min sampling interval on these

thunderstorm objects, there is a degree of dependence

between successive observations. Herzog et al. (2014)

found the optimal decorrelation time scale is at least

9min when sampling individual thunderstorm attributes

(i.e., maximum reflectivity). At every time step, each

thunderstorm object was categorized as either upwind

(A), over the city (B), or downwind (C). For all objects

meeting the above criteria, the maximum composite

reflectivity, VIL, and MESH were sampled beginning at

the 5-min time step and resampled every 10min after-

ward. For instance, a storm lifetime of 30min would be

sampled at 5, 15, and 25min, respectively. This initial

5-min time step (i.e., the average radar volume update

time) was chosen to mitigate potentially sampling the

initial or late stages of the thunderstorm.

Additionally, previous studies have shown that city size

and orientation can affect the magnitude of the pre-

cipitation modification (Huff and Changnon 1973;

Shepherd and Burian 2003; Schmid and Niyogi 2013). To

account for this, a city-dependent search radius equal to the

larger of the latitudinal or longitudinal distance was used to

define the maximum distance a thunderstorm observation

could be measured away from the urban footprint defined

in section 3d. This equated to 127km for DFW, 85km for

MSP, 56km forOKC, and 47km forOAX(Table 1).Other

variations ranging to 50% and 150% of the city length or

width were also investigated, but did not change the

results. Comparisons in the distributions of upwind and

downwind observations were evaluated using a two-sample

Kolmogorov–Smirnov test (Wilks 1995).

2) SPATIAL DISTRIBUTION OF RADAR DATA

Hand and Shepherd (2009) noted the potential for

variable magnitudes of precipitation modification to

occur depending on the direction of the prevailing wind.

To examine the spatial variation of thunderstorms, up-

wind and downwind regions were defined. Several past

studies used isobaric wind fields (e.g., 700 hPa) from an

observed sounding (Hand and Shepherd 2009; Haberlie

et al. 2015) or model reanalysis fields (e.g., Burian and

Shepherd 2005; Niyogi et al. 2017) for this purpose. In

this study, with the unique availability of individually

tracked storm objects, the upwind and downwind re-

gions were defined on a storm-by-storm basis by using

the mean direction of motion from the tracked thun-

derstorm object (Fig. 4).

Once defined, the maximum value of composite

reflectivity, VIL, and MESH occurring at each grid cell

was retained for the thunderstorm event. Complex

shapes of urban sprawl are associated with each city;

these result in an inconsistent start (end) to the upwind

(downwind) region. To standardize these zones, each

city was geometrically simplified using a convex hull

operation, and the upwind and downwind regions were

defined to begin 10km away from this convex boundary.

From the 10-km range onward, radar values were spa-

tially binned in 1-km intervals and the amount of area

covered in each bin was calculated (Fig. 4). From this

information, the areal mean value of each parameter

was calculated and tested for significance using a non-

parametric two-sample permutation test of the mean

(Wilks 1995).

FEBRUARY 2018 K INGF I ELD ET AL . 303



5. Results

a. Dataset overview

The number of storms analyzed was dependent on the

city area, with 718 storms around DFW, 644 around

MSP, 460 around OKC, and 391 around OAX (Fig. 5).

At the northern latitudes, MSP and OAX had the

highest percentage of thunderstorms occurring during

the meteorological summer, accounting for 57% and

46% of all observations, respectively. DFW and OKC

had the most thunderstorms during meteorological

spring (1 March–31 May) with 41% and 38% of the re-

spective storms. Summertime was the second-most ac-

tive with 22% and 33%, respectively. Southern latitudes

also had more storm occurrences in the fall and winter,

accounting for 37% of storms in DFW, 29% in OKC,

26% in OAX, and 11% in MSP.

Grouping thunderstorm occurrence relative to city

location revealed that each of the cities had the highest

number of thunderstorm objects upwind and decaying

over the city (AB). Storms that initiated over the city

and moved downwind (BC) accounted for the second

highest number. The smallest number of storms in our

dataset were those that formed upwind of the city,

tracked through the city, and then decayed downwind of

the city (ABC). These tracks accounted for 10% of

DFW storms, 18% of MSP storms, 30% of OKC storms,

and 26% of OAX storms—negatively correlated to city

size. The primary storm motion based on the centroid

position for most events was from southwest to north-

east in all cities, comparable to observations by

Changnon and Huff (1961).

The UF subset accounts for 6% of DFW storms, 15%

of MSP storms, 6% of OKC storms, and 7% of OAX

storms. For DFW and MSP, a higher percentage of

storms formed over the city (BC) than upwind (AB).

Around OKC, there were 12 AB storms and 12 BC

storms. OAX was the only city that continued to have

moreAB storms (11) than BC storms (9). Thunderstorm

direction on these synoptically weak days was not as

FIG. 4. Example of the upwind (blue) and downwind (orange) regions identified by the mean

motion of a storm object interacting with OKC on 20 May 2011.
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uniform compared to tracks from the full dataset.

41% of DFW storms propagated from the north or

northwest, MSP and OKC observed 40% and 46% of

storms propagating from the west, and 66% of OAX

storms moved from the northwest or southwest

(Fig. 5).

b. Storm-sampling analysis

The maximum composite reflectivity (hereafter

referred to as reflectivity; Fig. 6a), VIL (Fig. 6b), and

MESH (Fig. 6c) for all days (solid lines) and the UF

subset (dashed lines) revealed similar results across

all cities in the full dataset but variable results in the

UF subset. In the full dataset, there were more re-

flectivity and VIL samples from storms upwind of

OAX and downwind of the other three cities (see

number of samples N in Fig. 6). Additionally, all four

cities had fewer MESH samples in the downwind

region. In the UF subset, only DFW had a greater

number of MESH observations downwind of the

city area.

1) FULL DATASET

For DFW, the distributions of reflectivity, VIL, and

MESH were significantly different (p, 0.05; left column

in Fig. 6) between the upwind and downwind regions.

There was a higher overall percentage and frequency of

stronger storms in the upwind region. Around 98%

(91%) of upwind (downwind) observations had a maxi-

mum reflectivity $ 40 dBZ [the minimum reflectivity

threshold used to define a storm in Bentley et al. (2010),

Ashley et al. (2012), and Haberlie et al. (2015)]. This

trend continued at higher reflectivity thresholds; 53%

(46%) of upwind (downwind) reflectivity samples ex-

ceeded 55 dBZ. Similar trends were also observed for

multiple VIL and MESH thresholds.

Similar to observations around DFW, the upwind and

downwind distributions of storm parameters for MSP

were statistically significant (p , 0.05; Fig. 6, second col-

umn). There were a higher overall percentage and fre-

quency of stronger storms in the upwind region. Around

97% (94%) of upwind (downwind) reflectivity samples

FIG. 5. Storm tracks identified using the criteria specified in section 4b. The total number of storms occurring around each city alongwith

the number of storms that started upwind and ended over the city (AB), started over the city and ended downwind (BC), and crossed all

three regions (ABC) are annotated in black for the full climatology andUF datasets. The prevailing directions of motion for thunderstorm

objects from both datasets are annotated in purple.
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were greater than or equal to 40 dBZ. Comparable pat-

terns were observed in both VIL and MESH with the

median VIL around 14 kg m22 (11 kg m22) and MESH

around 6mm (5mm) in the upwind (downwind) region.

Near the OKCmetro area, the numbers of reflectivity/

VIL samples were similar in the upwind and down-

wind regions. However, there were a higher number of

MESH samples in the upwind region and all distribu-

tions were statistically significant (p, 0.05; Fig. 6, third

column). Similar to both DFW and MSP, around 97%

(93%) and 47% (38%) of upwind (downwind) samples

exceeded 40 and 55 dBZ, respectively. Similar patterns

are observed throughout the entire range of VIL and

MESH values.

OAX, because of its size, had the lowest number of

storm samples when compared with other cities, with

more in the upwind region for all three radar parameters

(Fig. 6, right column). Similar to patterns for the other

three cities, there were a greater number and overall

percentage ofmaximum reflectivity samples in the upwind

region for the entire range of reflectivity thresholds ex-

amined. The differences between the upwind and down-

wind distributions were statistically significant for only

maximum reflectivity (p, 0.05), with substantial overlap

occurring in both the MESH and VIL distributions.

2) UF SUBSET

Within the UF subset, the region downwind of DFW

was more convectively active with more than 2 times

the number of reflectivity/VIL samples and 36% more

MESH samples. This provided a much larger range of

values of all three radar parameters in the downwind

region. This difference results in a lower percentage but

higher total number of observations exceeding various

thresholds of reflectivity and VIL in the downwind re-

gion. For example, all upwind (N 5 45) and 82% of

downwind (N5 77) samples had a maximum reflectivity

exceeding 40 dBZ. The median VIL in the downwind

FIG. 6. CDF plots of (a) maximum reflectivity, (b) VIL, and (c) MESH upwind (blue) and downwind (red) of each city. The solid lines

are distributions from the full climatology, and the dashed lines are distributions from the UF subset. The upwind and downwind dis-

tributions were compared for equality using a two-sample Kolmogorov–Smirnov test.
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region is 16 kgm22, which was exceeded by 49 down-

wind samples compared to 35 in the upwind region.

While there are more hail samples (MESH) downwind

of DFW, nearly equal numbers of maximum MESH

values were sampled between 5 and 15mm. However, in

cases of NWS-defined severe hail ($25mm or 1 in.),

there were five observations that exceeded this criterion

in the downwind region compared to one in the upwind

region. This is likely due to the increased number of thun-

derstorm occurrences observed in the downwind region.

Around MSP, there were a greater number of

reflectivity/VIL samples and, unlikeDFW, fewerMESH

samples in the downwind region. The differences in the

upwind and downwind reflectivities were barely statis-

tically significant (p, 0.05) with a similar frequency and

percentage of samples exceeding 55 dBZ. When only

examining storms within 50% of the city diameter

(42 km instead of 84 km), the differences were no longer

statistically significant (p . 0.05). For the two vertically

derived products, MESH and VIL, there was a clear

downwind enhancement in strength; both VIL and

MESH had a greater number and percentage of down-

wind observations exceeding the thresholds of 8 kg m22

and 2mm, respectively.

The region downwind of OKC generally had a greater

percentage and frequency of weaker reflectivity,MESH,

and VIL values (Fig. 6, third column). Around 58%

(10%) of upwind (downwind) samples had a maximum

reflectivity $ 55 dBZ. No downwind occurrences of

maximum VIL exceeded 38kgm22 while 24% upwind

samples exceeded this threshold. There were fewer than

half the number of MESH occurrences in the downwind

region compared to the upwind region. Thirty-one per-

cent of the upwind occurrences had a MESH greater

than 16mm while no occurrences were sampled in the

downwind region.

Sampled thunderstorm occurrences around OAX had

overlap at different radar thresholds for all three pa-

rameters (Fig. 6, right column). Furthermore, the up-

wind and downwind distributions were not statistically

significantly different.

c. Storm-based gridded climatology

Analyses incorporating the gridded object area and

accumulating the composite reflectivity (Fig. 7), VIL

(Fig. 8), and MESH (Fig. 9) reveal common trends

across all parameters in both datasets around DFW and

MSP, and variable trends around OKC and OAX, de-

pendent upon the parameter and distance from the city

center. The gridded area and accumulations were cal-

culated across variable upwind and downwind distances

ranging from 50% to 150% of the maximum city di-

ameter. Four ways of summarizing these data within

each range interval upwind and downwind are shown in

Figs. 7–9 and include the total number of thunderstorm

objects at each range interval (panel a of each figure),

the areal sum of the radar parameter (panel b), the

overall area covered by the radar echo (panel c), and the

areal mean value (panel d), which is the value in panel

b divided by the value in panel c to give the mean value

experienced at any given 1-km2 grid cell.

1) FULL DATASET

Around DFW, the largest city examined, the upwind

and downwind regions experienced a nearly equal

number of thunderstorms from 10 to 64km (i.e., 50%

city diameter) (Fig. 7a). Yet, the total reflectivity in the

downwind region (Fig. 7b) was around 9% higher over a

10% larger area (Fig. 7c). This resulted in a lower areal

mean reflectivity (Fig. 7d) in the downwind region. A

similar pattern was seen in the VIL (Figs. 8a–d, left

column), with a 2%–4% increase in cumulative VIL

occurring over a 10%–21% larger area. This larger

spatial spread of VIL values over a larger area in the

downwind region lowered the areal mean VIL. Unlike

VIL, MESH values were not available at every pixel,

particularly if there was no reflectivity measured at

temperatures, 08C. This limited the number of samples

of ‘‘hail producing’’ thunderstorms. All ranges down-

wind of DFW had a lower cumulative MESH (from

21% to25%) occurring over a much larger area (15%–

18%) compared to observations in the upwind region,

resulting in a much lower areal mean MESH in the

downwind region.

MSP experienced 10% more downwind thunder-

storms out to 43km (50% city diameter) and 15% more

thunderstorms out to 128 km (150% city diameter)

(Fig. 7a). LikeDFW, however, the areal mean reflectivity

was lower in the downwind region (;40 dBZ km22) at all

ranges compared to the upwind region (;42 dBZ km22)

(Fig. 7d) as a result of the larger areal coverage of lower-

reflectivity values in the downwind region. A similar

pattern was observed with the VIL parameter. Cumu-

lative MESH was 12%–35% lower in the downwind

region (Fig. 9b) and occurred over a 5%–19% smaller

area (Fig. 9c). The weaker MESH values over a smaller

area resulted in a lower areal mean MESH measured at

all downwind ranges compared to the upwind region

(Fig. 9d).

From 10 to 28km (50% city diameter) downwind of

OKC, there were a lower number of storm occurrences.

They consisted of weaker cumulative reflectivity over a

smaller spatial area in the downwind region. From 10 to

84 km (150% city diameter), an opposite pattern

emerged, with a higher cumulative reflectivity over a

larger area (Figs. 7a–c). At all ranges, however, the areal
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FIG. 7. Values of composite reflectivity for the (left) full climatology and (right) UF subset at ranges upwind

(solid line) and downwind (dashed line) 50%–150% times the maximum city diameter. These regions are sum-

marized by (a) the number of thunderstormobjects, (b) the cumulative reflectivity, (c) the cumulative area affected,

and (d) the areal mean composite reflectivity.
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FIG. 8. As in Fig. 7, but for VIL.
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FIG. 9. As in Fig. 7, but for MESH.
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mean reflectivity was lower in the downwind region

compared to the upwind region (Fig. 7d). The cumula-

tive VIL value downwind of OKC was about 24% lower

than the upwind region, leading to a much lower areal

mean VIL in this region at all ranges (Fig. 8d). Cumu-

lative MESH was also around 50% lower in the down-

wind region, with the MESH signatures covering a 27%

smaller spatial area (Figs. 9b,c). These weak and sparse

MESH tracks downwind of OKC not surprisingly re-

sulted in a lower areal mean MESH, about 3mmkm22

lower than in the upwind region (Fig. 9d).

Like MSP, OAX has a higher number of reflectivity

grid cells (Fig. 7a) and cumulative reflectivity (Fig. 7b),

occurring over a wider area (Fig. 7c). This resulted in a

lower areal mean reflectivity (Fig. 7d) in the downwind

region. OAX was the only area to have a higher areal

mean VIL in the downwind region within the full data-

set, with a 7%–9% increase in cumulative VIL over

only a 2%–3% increase in area. This was not observed

with the MESH parameter; a higher cumulative MESH

(Fig. 9b) measured over a larger area (Fig. 9c) resulted

in a lower areal mean MESH (Fig. 9d).

2) UF SUBSET

Unlike the trends observed in the full dataset, the area

downwind of DFW had up to 51% more thunderstorm

observations (Fig. 7a, right column), resulting in a 153%

increase in cumulative reflectivity (Fig. 7b) and occur-

ring over up to a 131% larger area (Fig. 7c) in the UF

subset. As a result, the areal mean reflectivity was about

3 dBZ km22 higher in the downwind region on UF

days. Similar patterns in VIL were seen around DFW.

The cumulative VIL (areal coverage) was 239% (132%)

higher in the downwind region, yielding an increased

areal mean VIL downwind of DFW on UF days

(Figs. 8b–d). There were also a greater number of MESH

observations downwind of DFW, with up to a 455% in-

crease in cumulative MESH (Fig. 9b) over a 291.6%

larger area (Fig. 9c). This resulted in a higher areal mean

MESH in the downwind region (Fig. 9d). At ranges be-

yond 127km from DFW, the difference in areal mean

MESHwas not statistically significant (p. 0.05) and was

the only occurrence of such a result out of all of the areal

mean comparisons for each city, radar parameter, and

case dataset.

Similar to DFW, the area downwind ofMSP had up to

33% more thunderstorm observations (Fig. 7a) and up

to a 132% (68%) increase in cumulative reflectivity

(areal coverage) (Figs. 7b,c). This resulted in an elevated

downwind areal mean reflectivity at all ranges exam-

ined (Fig. 7d). Cumulative VIL (areal coverage) values

were 143% (68%) higher in the downwind region

compared to the upwind region and, thus, had a higher

downwind areal mean VIL at all ranges from MSP.

Trends in MESH values were similar to those observed

for VIL with a higher areal meanMESH observed in the

area downwind of MSP.

OKC showed a 2% decline in the number of down-

wind storms out to 28km (50% city diameter); however,

the downwind cumulative reflectivity was ,1 % higher

and covered an area 2% smaller than the upwind region,

resulting in a slightly higher arealmean reflectivity in the

downwind region. Yet, the upwind region encompassing

ranges . 42 km away from OKC experienced larger,

stronger storms (Figs. 7b,c) than the downwind area of

equal distance, even in the UF subset. This produced

lower areal mean reflectivity values in the downwind

region (Fig. 7d). Cumulative VIL values were 41%

lower in the downwind region out to 84km (150% city

diameter) and encompassed an area around 6% smaller

than the upwind region (Figs. 8b,c). This resulted in a

lower areal mean VIL in the downwind region, the op-

posite of the VIL patterns around DFW and MSP

(Fig. 8d). Areas downwind of OKC had fewer MESH-

producing thunderstorm occurrences; as such, this area

had a lower cumulative MESH that covered a smaller

area (Figs. 9a–c). This resulted in meanMESH values at

least 2mm smaller in the downwind region (Fig. 9d).

At all range intervals downwind of OAX in the UF

subset, there were fewer thunderstorm occurrences in

the downwind region, and there was a 9%–19% decline

in cumulative reflectivity (Fig. 7b) over a 14%–20%

smaller area (Fig. 7c). From 10 to 28km (50% city di-

ameter), the percentage decline in cumulative re-

flectivity was slightly lower than the percentage decline

in the affected area for both the upwind and downwind

regions, producing nearly equal mean areal reflectivity

for both regions. At subsequent ranges from OAX,

there was a higher areal mean reflectivity in the down-

wind region (Fig. 7d). Both the number of thunderstorm

occurrences and the total affected area were lower in the

downwind region at all ranges surrounding OAX.

However, cumulative VIL was higher when grid cells

beyond 47 km in the downwind region were included

(Figs. 8a–c). As a result, areal mean VIL values down-

wind of OAX were 18%–46% higher in the downwind

region and comparable to observations from the full

dataset (Fig. 8d). Similar to OKC, areas downwind of

OAX had a lower number of MESH-producing thun-

derstorm occurrences (Fig. 9a). However, the areal

coverage of MESH in this region was much larger,

covering 14%–55% more area than the upwind region.

Cumulative MESH values also were higher from 47km

(100% city diameter) and beyond, but not large enough

to compensate for the increases in overall areal coverage
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(Figs. 9b,c). Thus, the mean MESH was lower at all

downwind ranges evaluated (Fig. 9d).

6. Discussion

This study incorporated the techniques from the

MRMS and WDSS-II frameworks to process radar,

lightning, and near-storm environmental fields in order

to create over 2.6 million grids of reflectivity, MESH,

and VIL at a very high spatial (#1 km) and temporal

(1min) resolution. The methods employed in this study

address two main assumptions used in prior urban

thunderstorm studies using fixed observational gauges

(Huff and Changnon 1972; Jauregui and Romales 1996;

Diem and Mote 2005; Niyogi et al. 2017) and remote

sensing systems (Shepherd et al. 2002; Dixon and Mote

2003; Mote et al. 2007; Hand and Shepherd 2009;

Bentley et al. 2010; Niyogi et al. 2011).

First, many of these studies cannot quantify the

number of storms that directly interacted with a city. For

instance, Mote et al. (2007) examined hourly pre-

cipitation patterns near Atlanta and observed instances

where precipitation downwind of Atlanta was actually

initiated in the mountains and not directly due to urban

influences. Through the use of an automated storm

tracking system, it can be captured exactly where and

when a thunderstorm interacted with an urban area.

Second, prevailing wind has predominantly been esti-

mated in past studies through use of NWS radiosonde

observations (Hand and Shepherd 2009; Haberlie et al.

2015) or isobaric pressure levels from model reanalysis

data (e.g., Burian and Shepherd 2005; Niyogi et al.

2017). As noted in Niyogi et al. (2017), the 850-hPa wind

field was used to assess the boundary layer winds, but

individual storm cells can deviate from this flow. Within

this study, the 1-min thunderstorm track defined the

upwind and downwind regions on an individual storm

basis. Furthermore, these upwind and downwind regions

were standardized by the relative position from the city,

allowing for the calculation of bulk statistics in-

dependent of geographic location, instead of focusing

on a predefined region based on a monthly or seasonal

average of flow (i.e., 25–75km east of DFW).

Nonetheless, our analyses are not free from limita-

tions. Thunderstorms do not always follow an ordinary

life cycle (i.e., growth, maturity, decay) without being

subject to interactions such as splitting and merging

(Lakshmanan et al. 2009). While these features can be

documented by smaller-scale and often time-consuming

manual analyses of thunderstorms (e.g., Niyogi et al.

2011), it is assumed these impacts were minimized in this

study. Furthermore, the way WSR-88D data are

collected and calibrated is dependent on the radar

hardware and volume coverage pattern chosen by the

radar operator. While the blending of multiple radars,

through the use of a system like MRMS, provided in-

creased volumetric coverage of a thunderstorm over

single-radar studies (Maddox et al. 1999; Lakshmanan

et al. 2006; Smith et al. 2016), all studies usingWSR-88D

data are limited by how these data are collected (e.g.,

volumetric scanning strategies, etc.) and calibrated.

Signal calibration continues to be a challenge for any

analysis using radar, particularly when comparing sig-

nals from separate radar systems (Atlas 2002). The

WSR-88D network is not immune from these potential

sources of error; yet, routine checking and automatic

monitoring procedures are in place to minimize the

length of time these errors persist (Serafin and Wilson

2000). The criteria that each thunderstorm object’s

centroid pass through the urban area and be tracked for

at least 30min ensured urban interaction and allowed

radar attributes to be independently sampled at least

three times per thunderstorm. Lowering this tracking

threshold to 10min only increased the number of total

cases by 7%around all cities. Regardless, thunderstorms

with shorter lifetimes or thunderstorms that form

downwind of the city as a result of the role of potential

urban-induced convergent zones (e.g., Bornstein and

Lin 2000) or aerosol entrainment (e.g., Schmid and

Niyogi 2017) were not included in this study but warrant

future attention.

Both analysis methods, particularly the spatial gridd-

ing method, revealed stronger reflectivity and vertically

integrated quantities downwind of DFW (;4600km2)

andMSP (;2650km2), the two larger cities in this study.

Additionally, this was most evident on UF days com-

pared to the full dataset. For both of these cities, a higher

number of thunderstorms developed over the city and

propagated downwind on these days, similar to the re-

sults of Haberlie et al. (2015) around Atlanta. This

pattern would imply that larger cities, with a widespread

distribution of impervious surface materials, allow for

greater anthropogenic influences (e.g., pollution) and

could generate new and strengthen existing thunder-

storms at a greater magnitude downwind than small

cities given the appropriate conditions.

Around OKC, a city 40% the size of MSP, an increase

in downwind areal mean reflectivity did occur when

examining an area from 10 to 28km, but not at further

downwind ranges. Areal means of MESH and VIL as

well as independent samples of themaximum reflectivity,

MESH, and VIL tended to be higher in the upwind re-

gion around OKC on UF days. Hand and Shepherd

(2009) identify the north-northeast region downwind of

OKC to be the climatologically wettest region; however,

this region only aligns with 6 of the 28 thunderstorms
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objects evaluated in our UF subset and limits any sort of

comparison herein. Regardless, any downwind en-

hancement in these radar parameters is not observed in

the thunderstorms for OKC, as was noted for DFW

and MSP.

AroundOAX, with an urban footprint that is 26% the

size of MSP, there was no statistically significant dif-

ference between the upwind and downwind samples of

maximum reflectivity, VIL, andMESH in theUF subset.

Furthermore, unlike what was observed aroundDFWor

MSP, there was no immediate downwind enhancement

in areal mean reflectivity or MESH on UF days. This,

coupled with being the smallest city in the study, in-

troduces some uncertainty as to how much the urban

area of OAX can augment thunderstorms. Other geo-

graphically collocated factors, such as the relatively

homogeneous amount of cultivated crops surrounding

this urban area, are known to have a definitive impact.

Clark and Arnitt (1995) found that surfaces with moist

soil and vegetation cover were most conducive to con-

vective development. Gero and Pitman (2006) observed

through numerical model simulations that the re-

placement of agricultural land with shrubland hindered

storm development upwind from Sydney, Australia.

Additional numerical modeling and observational

studies are needed to delineate the role of homogeneous

versus heterogeneous land cover on storm initiation

comparable to studies of the effects of topography (e.g.,

Lowry 1998; Niyogi et al. 2006).

DFW (;4600km2) and MSP (;2650km2) both

showed a downwind enhancement in composite re-

flectivity, MESH, and VIL from both analysis methods

on UF days compared to OKC (;1060km2) and OAX

(;700 km2). This indicates the contributing role of city

size in precipitation modification. Schmid and Niyogi

(2013) modeled the effects of city size and found that

both the maximum average heat island and the amount

of precipitation modification increased linearly with city

radii ranging from 5 to 20km with fairly constant effects

observed beyond this threshold. While a definitive size

threshold cannot be defined here, size is only one factor

contributing to the magnitude of urban modification.

Other contributing factors such as the regional climate

(Roth 2007), the variable influence of urban-induced

aerosols on precipitation timing andmagnitude (Rosenfeld

et al. 2008; Lebo 2014; Schmid and Niyogi 2017),

the surrounding regional landscape species variability

(Rabin et al. 1990), and soil moisture gradients as a re-

sult of natural and irrigation practices (Barnston and

Schickedanz 1984; Niyogi et al. 2006; DeAngelis et al.

2010), coupled with urban size/shape, could provide a

geographically dependent alteration to the extent of

precipitation modification.

7. Conclusions

This study highlights the utility of the MRMS frame-

work to blend multi-instrument datasets, identify thun-

derstorm areas, and track storm attributes. Five years’

worth of composite reflectivity, MESH, and VIL grids

were created and examined for four cities of varying

sizes (DFW, MSP, OKC, and OAX) to better un-

derstand how city size affects thunderstorms. Overall,

city size seems to be a contributing factor in enhancing

the coverage and magnitude of these radar variables in

the downwind region; however, these effects were not as

clearly observed when examining objects across all

seasons and synoptic regimes. Sampling each thunder-

storm object every 10min reveals that a greater overall

percentage and frequency of thunderstorms had a

higher composite reflectivity,MESH, andVIL occurring

upwind of all four cities. Spatially accumulating these

fields revealed a higher areal mean of all three param-

eters occurring upwind of all four cities, with the ex-

ception of VIL around OAX.

Taking a subset of thunderstorms and matching histor-

ical seasonal, temporal, and synoptic environments where

urbanmodification is likely reveals an increased number of

thunderstorms forming and moving downwind of DFW

andMSP, the two largest cities examined. This resulted in

higher areal mean values of composite reflectivity,MESH,

and VIL at several ranges downwind of both cities com-

pared to the upwind region. This pattern was not observed

in all radar fields downwind of OKC and OAX, cities

roughly 40% and 26% the size of MSP, particularly in

analyses of the vertically derived fields ofMESH andVIL.

This could be indicative of a lack of influence of small to

midsized urban areas (#;1100km2 based on our city se-

lection). Yet, this subset reveals that areas downwind of

larger cities are susceptible to more frequent and stronger

thunderstorms that are likely initiated by the urban envi-

ronment and are subject to the occurrence of heavier

rainfall and increased hail potential.

The thresholds used to delineate UF environments

resulted in an 84%–94% reduction in the number of

thunderstorm cases based on observations of thunder-

storms measured in prior studies (Dixon andMote 2003;

Mote et al. 2007; Haberlie et al. 2015). The contrast

between the full dataset and the UF subset reveals that

the percentage of storms capable of beingmodified over a

city due to seasonal, temporal, and synoptic influences is a

small fraction of the number of storms that affect cities

on a yearly basis. Based on the percentage of UF storms

retained from the full dataset, MSP (15%) compared to

DFW (6%), OKC (6%), and OAX (7%) has the highest

potential for the urban domain to influence storm struc-

ture and intensity. However, the inconsistent nature of
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these precipitationmodification patterns through the lens

of the full climatology of all cities raises the question as to

whether the statistical predictability of these patterns is

achievable, since instantaneous measures of other sus-

pected modification variables (e.g., spatial aerosol load-

ing; Van den Heever and Cotton 2007; Kawecki et al.

2016) may not be readily observable.

For future retrospective analyses of thunderstorms,

we promote the use of the MRMS system because of its

ability to blend information from multiple sources

onto a common grid. Since the completion of this study,

there have been improvements in both the data quality

and longevity of archived data available over the United

States. The recent upgrade of the WSR-88D network

with polarimetric capability provides additional in-

formation on the hydrometeor distributions of convective

systems (e.g., Zrnić andRyzhkov 1999). Furthermore, the

launch of the Geostationary Operational Environmental

Satellite-R series satellite with the Advanced Baseline

Imager (Schmit et al. 2017) and Geostationary Lightning

Mapper (Goodman et al. 2013) instruments provides

significant spatiotemporal improvements in the observa-

tion and monitoring of both surface-based and atmo-

spheric phenomena that hindered prior satellite analyses

of thunderstorms (e.g., Cintineo et al. 2013). These new

datasets are open for exploration with theMRMS system

and could provide the next set of observational evidence

to diagnose the role urban areas have on influencing

thunderstorm evolution.
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